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A mathematical model of blood flow in arterial vessels with account for the nonstationary character of the 

laminar flow and the time-varying pressure drop is considered. The viscosity of blood is assumed to obey a 

power law. The rheological properties of the walls of arterial vessels are described by i) the Voigt-Kelvin 

model, ii) the standard-body model, and iii) the three-component Voigt-Kelvin model. As a result of 

numerical simulation, flow-pressure characteristics of various arteries are obtained. 

Blood flow in the human organism is traditionally an object of basic investigations in the field of 

thermophysics and hydrodynamics. Robert Mayer formulated the first law of thermodynamics on the basis of 

physiological and pathological observations of features of blood circulation under  tropical conditions [1 ]. 

Investigations by Euler and Stokes were based on an analytical description of blood flow; experimental 

investigations of blood flow in capillaries were carried out by Poiseuille [2 ]. A detailed analysis of blood-circulation 

hydromechanics in the human organism in the normal state and in pathological cases is essential for cardiac 

surgery, oncology, hematology, development of survival systems, and hyper- and hypothermia. We consider a 

mathematical description of nonstationary blood flow in the human arterial system from the viewpoint of the 

mechanics of continuous media with account for the rheological properties of the vessel walls. 

The wails of all large arteries have three shells: inner, middle, and outer (Fig. 1). The inner shell includes 

the endothelium, subendothelial layer, and inner elastin membrane. The subendothelial layer consists of thin 

elastin and collagen fibers, connective tissue, and the main substance. The inner membrane contains elastic fibers 

braided with collagen fibers. Collagen is a highly durable protein whose fibers form spirals and therefore permit 

some stretching without stress. The skeleton of the middle shell includes interciannected concentric elastic 

membranes formed by highly stretchable elastin protein fibers. The middle shell has a composite structure and 

consists of several (up to 60) coaxial membranes interconnected by plane muscle fibers covered by collagen fibers. 

The cavity between the membranes is filled with porous tissues and a fluid. Smooth-muscle cells and fibers attached 

to elastic membranes are situated in the middle layer of the wall of a vessel and are parallel to or inclined with 

respect to its direction. A decrease in the vessel diameter is accompanied by an increase in the number of muscle- 

tissue layers and a decrease in the number of elastic-tissue layers, the latter ultimately transforming into two thin 

membranes on the inner and outer surfaces of the muscle shell. The outer elastic membrane situated on the 

boundary of the middle and outer shells consists of longitudinally oriented thick elastic fibers and circularly 

arranged collagen-fibril bunches, which, with the aid of a network of interconnecting transverse collagen fibers, 

form a unified structure. Elastic-fiber bunches with numerous interconnections are situated in the surface layers 

of the outer shell [3-5 ]. 
The value of the elasticity modulus of such a complicated system as the fiber wall cannot be determined 

unambiguously but rather is a complicated function of the temperature, intravessel pressure, partial pressure of 

oxygen, and other factors. Vessel conductivities are calculated with account for the deformability and elasticity of 

the walls. Arterial walls have rather high deformability values. For example, the deformation e can reach 80% in 

the carotid artery, 13 to 22% in the anterior, middle, and posterior meningeal arteries, according to [6 ], and 40% 

in the femoral artery [7 1. 
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Fig. 1. Structure of blood vessels [3-5]: 1) inner  shell (intima); 2) middle  

shell (media);  3) outer shell (adventicia); 4) inner elastic membrane;  5) outer  

elastic membrane;  6) vein vent; 7) capillaries; 8) smooth muscles; 9) elastin; 

10) collagen. 
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Fig. 2. Voig t -Kelv in  viscoelastic-solid model (a) and s t andard -body  model  

(b). 

The  first variant  of accounting for the viscoelastic properties of vessels consists in an at tempt  at their  

description based on the Voig t -Kelv in  model [8 ]. An increase in the radius of the vessel wall is descr ibed in this 

case by the differential equation 

de E a ( la )  
d--7 + ~-e = ~ ,  

where e is the relative radial deformation,  equal to the change in the vessel radius due to the intravessel pressure.  

The  second variant  considered here  is the s tandard-body model used for description of many  soft tissues 

[4 ], in particular, muscle tissue, which is, in fact, a parallel connection of Hooke 's  and Maxwell 's  models (Fig. 2). 

The  rheological equation of the s tandard  body is as follows: 

de a 1 d a  E 2 (1 b) 
- - I -  e .  

Finally, in accordance with the concept of a three- layer  structure of the arlerial  wall, the variant of repre-  

sentation of each of the layers by the Voig t -Kelv in  viscoelastic-solid model [7 ] is considered.  One and the same 

load a is imposed on each of the three layers,  and the total deformation of the vessel wall e is the sum of the 

deformations of the three layers. An increase in the vessel radius is described by the three differential  equations 
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de  1 E 1 cr de  2 E 2 cr de  3 E 3 cr 

d---t- + ~ el - r/l ' d~ + ~ 2  e2 - 7"]2 d~- + --r] 3 e3 = ~ 3 '  e = e 1 + e 2 + e 3 , ( lc )  

where c i is the radial deformation,  equal to the relative increment in the vessel radius due to the intravessel pressure 

a,  E i  is the modulus of elasticity of the vessel wall, and r]i is the viscosity of the i-th layer  of the vessel wall, not 

coinciding with the viscosity of blood kt. In each of the layers,  the deformation is de layed with respect to the applied 

stress by the re tardat ion time 0 i = r l i / E  i. The  stress a in the arterial-vessel wall is defined as the blood pressure 

averaged over the vessel length: 

1 
cr = PO + ~ Ap,  

where P0 is the pressure at the vessel entrance and Ap is the pressure drop over the vessel length l. 

Exist ing exper imental  data on blood circulation with local heat ing of vessels with a hot physiological 

solution i n  v i vo  point to the following features of the rheological behavior of vessel walls: arteriols virtually do not 

change their  radii upon heat ing to 48 ~ and upon heating to 65 ~ or more, the opening of vessels - both arteriols 

and venules - always decreases [9 ]. This  corresponds to a constant value of the modulus of elasticity of arteriols 

for temperatures  up to 48 ~ and an increase in their  modulus of elasticity upon heat ing to 65 ~ or more. The  

complicated character  of this dependence is most likely explained by the fact that the components  of the vessel wall 

- collagen, elastin, and  muscle fibers - have different temperature  dependences  of the modulus of elasticity. The  

modulus of elasticity of collagen and muscles drops with temperature,  whereas that of elastin increases [10, 11 ]. 

Upon heat ing by the radiat ion of an Ar laser with a wavelength 2 = 514 nm, the radii of venules can increase almost 

twofold dur ing irradiat ion for 40 sec and they relax to their  original values in a l ime of about  100 sec [12 ]. 

In the case of general  hype r the rmia  of the organism, the react ion of vessels to an increase  in the 

temperature  of the body depends on the type of vessel, its diameter,  and the heat ing time. Thus ,  in considering 

microvessels of d iameter  6 0 - 7 0  ktm, arteriols expand in the initial stage of heat ing and collapse with fur ther  

heating; on the other  hand,  venules only collapse, and the most intense collapse takes place during the first hour  

of heating [ 13-15 ]. Oscillatory changes with al ternat ing expansions and collapses are characterist ic of arteriols and 

venules of smaller  diameters.  The  largest microvessels (of diameter  6 0 - 7 0  ttm) collapse upon heating. The  collapse 

and expansion of vessels also depend on the concentrat ion (tension) of oxygen in the blood [16 ]. 

The  relat ionship between the modulus of elasticity and the intravessel pressure under  static conditions was 

determined in [17 ] for thoracic and ventral aortas and femoral and carotid arteries.  The  modulus of elasticity of 

all these vessels increases l inearly from 0.1 to 2 MPa (i.e., from 750 to 15,000 mm Hg) with increase in the 

intravessel pressure f rom 20 to 240 mm Hg. With periodic perturbations at a f requency of 2 Hz,  the modulus of 

elasticity of vessels is increased [18 ]. It equals 0.47 MPa for the thoracic aorta,  1.09 MPa for the ventral  aorta,  1.2 

MPa for the femoral a r tery ,  and 1.1 MPa for the carotid ar tery.  Values of the same order  of magni tude were 

obtained n measurements  of the modulus of elasticity of the vessel shell of the fundus of the eye  - 1.3 to 3.7 MPa 

(i.e., 9800 to 27,800 mm Hg) depending on the direction [19 ]. The  elasticity depends  on the collagen-to-elast in 

ratio; thus, for example,  the elasticity modulus of the cornea, containing only collagen, equals 4.8 MPa, or 36,000 

mm Hg [20]. 

According to data of [10, 11 ], the modulus of elasticity of elastin increases l inearly for temperatures  up to 

60 ~ 

E = [0.363 + 0.00812 (T - 37) l ,  MPa ; 

the modulus of elasticity of collagen decreases l inearly for temperatures  up to 60 ~ 

(2) 

E =  [ 4 . 4 6 - 0 . 0 2 ( T -  3 7 ) ] ,  MP a .  (3) 

It is evident from these data that the above-presented experimental  values of the modulus of elasticity of arteries 

are close to that of elastin. 
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Restricting the temperature  to a value of 60 ~ in Eqs. (2) and (3) is substant iated by the fact that  a fur ther  

increase in temperature  leads to temperature- induced shrinkage of collagen [21, 22 ] .  

At the present  stage of investigations, the viscosity of blood is assumed to scale as a power of the shear  

velocity gradient ), = d u / d r  for all vessels: 

/z = ,u 0 , (4) 

and for blood, n = 0 .9 -0 .92 ,  and therefore,  the viscosity depends only weakly on the shear  velocity gradient .  

According to [23 ], the shear  velocity gradient  7 in the arterial part of the blood-circulation system has the following 

values: 7 is about 100 sec - l  in the aorta,  up to 400 sec -1 in large arteries,  and 7 < 100 sec - I  in small ar ter ies  and  

arteriols.  Small shear  velocities are characteristic only of veins. The  ent ire  volume of circulating blood can be divided 

conventionally into two portions [24 ]: a rapidly circulating one (occupies about  60% of the volume and fills cardiac 

cavities and vessels with a diameter  larger than i00 tzm) and a slowly circulating one (occupies about  40% of the 

volume and  fills vessels with a d i ame te r  smal le r  than 100 k~m, vessels of pa rench imatose  organs ,  and  the 

microcirculatory alveus). The  period of complete circulation of the blood slightly exceeds 1 min [24 ]. 

The  mathematical  model of the s ta t ionary distribution of blood flows is a detailed form of the cont inui ty  

equation for the arterial  network, including 128 vessels [25, 26 ]. Each conjugation point is ei ther  a t ransi t ion to a 

vessel with a different  d iameter  or a branching. The  number  of branchings at some nodes can be as high as six. 

T h e  flow in all vessels is assumed to be laminar.  Here,  the unknown quantities are the pressure at the vessel 

conjugation points. At each of the node points of the ar ter ia l -system scheme, the condition of zero algebraic sum 

of all incoming and outgoing flows should be satisfied. The  stipulation of the indicated conditions for all nodes 

forms a system of l inear algebraic equations whose solution yields an initial approximation to the solution of the 

problem of evaluation of the t ime-dependent  blood flow. 

The  equation of the t ime-dependent  blood flow in each vessel is as follows: 

p dq + 8pq _ A p ,  (5) 
2 r 0(1 + e) 2 dt ~ r  4(1 + e) 4 l 

where r 0 is the initial vessel radius. This equation represents the balance of the forces acting on the blood flowing 

in the vessel. The  lef t -hand side of the equation is the sum of the forces of inertia and viscous friction, and the 

r ight-hand side is the external  compelling force. The  equation does not take into account forces connected with the 

change in the velocity profile along the vessel length. 

The  t ime-dependent  flow of arterial  blood with account for the viscoelastic properties of the vessel walls is 

de termined by a system of f i rs t -order  differential  equations: equation of motion (5) and equations (1) describing 

the deformation of the vessel walls. In the case of the Voig t -Ke lv in  or the s t andard-body  model the lat ter  is a 

single equation of the form ( la)  or ( Ib) ,  and in the case of the three-component  model it is three  equations ( lc) .  

The  conditions under  which one can write equations for s ta t ionary flows at branchings of the hydraul ic  

sys tem are as follows: the kinetic energy of the liquid is small compared to the potential energy,  and the geometric 

dimensions of the branchings are negligible compared to the acoustic wavelength within the f requency range at 

hand.  The  stipulation of the indicated conditions for all node points forms a system of l inear algebraic equations. 

T h e  flow rate through each of the vessels is expressed in terms of the difference of pressures at the ent rance  to 

and exit from the vessel in a form similar to Ohm's  law: 

qi = Ci (Pin -- Pout)' (6) 

where qi is the volume flow rate in the i-th vessel, c i is the conductivity of the i-th vessel, and Pin and Pout are 

pressures at the entrance to and exit from the vessel. 

The  conductivity of the i-th vessel is determined in the laminar-flow approximation by the Stokes formula 

425 



&5 1.0 ~5 ap 

I. 50 

L25 
1.00 
0.75 

0.50 

0.25 

G 
1,2.5 

O,75 

0,50 

0,25 

o o a2 0.4 a6 o.8~p 

G 

Fig. 3. P ressure - f low character is t ics  for  the in ternal  m a m a r y  a r te ry :  a) 

Voig t -Kelv in  approximation,  modulus of elasticity E = 8.105 Pa, viscosity of 

the vessel wall 107 Pa-sec;  b) vessel wall described by the s t andard -body  

model with the parameters  E] = 0.5- 105 Pa, Ea = 105 Pa, re tardat ion time 60 

sec, pulse rate 70 strokes per minute. 
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Fig. 4. Blood flow rate and deformation (shown by the arrow) (a) and the 

pressure-flow characteristic (b) of the three-component  Voig t -Kelv in  model 

for  the  i n t e r n a l  m a m m a r y  a r t e r y ;  pulse  ra te  70 s t rokes  per  minu te ;  

re tardat ion times 01 = 100 sec (elastin), 02 = 28.5 sec (col lagen) , ,and 03 = 

0.025 sec (muscle tissue). 

n R  4 (7)  

c i -  81~l' 

where R i is the radius of the i-th vessel of the length l, expressed in terms of the initial (anatomical) value of the 

radius rot with a correction e for the total deformation in the radial direction unde r  the effect of the intravessel 

pressure: 

g i = rot (1 + e ) .  (8) 

Stat ionary expressions (6) and (7) are obtained from equation of motion (5) at d q / d t  = O. 

The  values of the moduli of elasticity and the retardat ion times 0 i = rl i /E i for the three layers  of the vessel 

wall were de te rmined  based on the consideration that the viscosity of all three layers of the vessel wall has a value 

of the order  of 107 Pa-sec,  and therefore  01 = 100 sec, 02 = 28.5 sec, and 03 -- 0.025 sec. Since no reliable data on 

the viscosity of muscle tissue are available, calculations were also carried out for 03 having a value two orders  of 

magnitude higher: 03 = 2.5 sec. 

The  sys tem of equations describing the t ime-dependent  blood flow in the vessel and the viscoelastic 

properties of the vessel walls, i.e., equation of motion (5) along with the system of three deformation equations (1) 

for the three layers of the vessel wall, is solved by the single-step R u n g e - K u t t a - F e l b e r g  method of fourth order  

of accuracy with automatic choice of the step. The  stat ionary value of the blood flow rate is used as the initial 

approximation for calculation of t ime-dependent  blood flow rates and pressures in the ar tery.  

Figure 3 presents pressure-flow characteristics for the short internal mammary  ar tery  ( L / r  = 2.56). Figure 

3a shows the Voig t -Kelv in  approximation with a modulus of elasticity E = 8.105 Pa and a vessel wall viscosity of 
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Fig. 5. Change in the pressure-flow characteristic of the internal mammary 

artery with increase in the pulse frequency to 2 Hz (120 strokes per minute) 

when the vessel wall is described by the three-component Voigt-Kelvin 

model. 
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Fig. 6. Effect of the .shape of the incoming pressure pulse on the pressure-flow 

characteristic: triangular pulse with a steep (a) and a flattened (b) front slope. 

107 Pa-sec, which corresponds to data of [25]; in Fig. 3b, the vessel wall is represented by the standard-body 

model with parameters E1 = 0.5- 105 Pa, E2 = 105 Pa, and a retardation time of 60 sec. In both variants, the pulse 

rate was 70 strokes per minute with a modulation depth of 100%, i.e., the pressure varies from zero to its stationary 

value according to the harmonic law 

Ap (t) = Apo (1 - cos (wt ) ) /2 ,  (9) 

where w -- 2 n / r  is the angular frequency, and T = l / f .  
A calculation by the three-component Voigt-Kelvin model for the same artery is presented in Fig. 4. Figure 

4a shows the time-dependent blood flow rate in the artery and the deformation of the vessel radius for a harmonic 

variation of the pressure drop. The pulse rate was also 70 strokes per minute. The retardation times were 01 = 100 

sec (elastin), 02 --- 28.5 sec (collagen), and 03 = 0.025 sec (muscle tissue). The modulation depth was also 100%. 

It is evident that the flow-rate envelope changes its slope at instants equal to the retardation times. Figure 4b 

presents the pressure-flow characteristic (in dimensionless form). As time elapses, the hysteresis loops shift upward 

and acquire a progressively steeper slope. Figure 5 illustrates the change in the pressure-flow characteristic for the 

internal mammary artery ( L / r  = 2.56) with increase in the pulse rate to 2 Hz (120 strokes per minute) when the 

vessel wall is described by the three-component Voigt-Kelvin  model with the same parameters.  Here the 

modulation depth is 80%, i.e., the pressure varies from 0.2 to its stationary value. It is evident from the plot that 

an increase in the pulse rate leads to broadening of the pressure-flow characteristic. Both harmonic and anharmonic 

periodic pressure variations were considered (Fig. 6). The difference from the preceding plot consists in a change 

in the shape of the periodic pressure pulses. Figure 6a presents the reaction of the flow rate to a triangular pressure 

drop with a sleep front slope (this shape of the pressure pulse is characteristic of the exit from an artery 127 ]), 

and Fig. 6b presents similar results for a pulse with a flattened front slope. The frequency and the parameters of 
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Fig. 7. Evolution of the pressure-flow characteristic with time (the numbers 

1 to 4 denote pressure-flow characteristics corresponding to different time 

intervals): 1) < 5 sec; 2) 25 -30 ;  3) 95-105;  4) 250-260  sec. 

the model are the same as in the preceding plot. For the anharmonic change in the pressure drop, a triangular 

pulse shape with a total duration ~ = 1 / f  was used. The sleep and flattened front slopes correspond to a pressure 

increase to the maximum value in 0.25T and 0.753, respectively. The harmonic variation of the pressure was given 

by Eq. (9). 

We also analyzed the effect of an increase in the retardation time by two orders of magnitude for the 

smooth-muscle-tissue component in the Voigt-Kelvin model. The retardation times were taken to be as follows: 01 

= 100 sec (elastin), 01 = 28.5 sec (collagen), and 03 = 2.5 sec (muscle tissue). Figure 7 presents the time evolution 

of the pressure-flow characteristic. The lower portion of the plot shows the pressure-flow characteristic during the 

first 5 sec, above which the characteristic for time periods of 25 to 30 sec and 95 to 105 sec is situated, and the 

region of stabilized flow (250-260 sec) is situated at the very top. The modulation depth is 20~o, i.e., the pressure 

varies from 0.8 to its stationary value. 

The mathematical simulation of the hydrodynamic processes in viscoelastic arterial vessels makes it possible 

to draw the following conclusions. 

The hydraulic resistance of arteries can vary substantially depending on the time, the rate of cardiac 

contractions, and the shape of the pressure pulse at the vessel entrance. Long and short arteries show different 

reactions to pressure variations. 

Use of rheological models of arterial-vessel walls makes it possible, in contrast to the approach based on 

use of Hooke's law [25 ], to obtain time dependences for the flow rate under non-steady-state conditions. 

Use of the three- or multicomponent Voigt-Kelvin model makes it possible to account for the characteristic 

times of different physiological processes. The standard-body model as applied to the artery wall also makes it 

possible to account for the rate of variation of the load. 

The actual behavior of arterial vessels can be described within the framewo?k of the rheological models 

considered by changing the parameters of the models. 

Under conditions of hyper- and hypothermia, when the process of temperature changes in the tissues of 

the organism lasts for several hours, numerical solution of this problem makes it possible to account for the 

temperature dependence of the rheological parameters of the tissues. 

The moduli of elasticity and the relaxation times of the individual layers of the vessel wall serve as initial 

data for the calculation. The present investigation points to the necessity of experimental investigation of the 

rheological parameters of wails of blood vessels at various deformation rates. 

The authors acknowledge the support of the work by the Foundation for Basic Research of the Republic of 

Belarus through grant B97-005 "Rheological factors of blood circulation and processes of nonstationary momentum 

and heat transfer in living systems under cold effects." 
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N O T A T I O N  

or, stress; e, relative deformation of the vessel wall;/~, viscosity of blood; r/, viscosity of the vessel wall; p, 
density; ~o, angular frequency of cardiac contractions; r, oscillation period; c, vessel conductivity; E, modulus of 
elasticity of the vessel wall; f, frequency of cardiac contractions; q, volume blood flow rate; R, vessel radius; t, time. 
Subscripts: 0, unperturbed value; i, vessel number; in and out, values at the entrance to and exit from the vessel. 
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